
*031 883 MAS5ACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE ETC FIG 9/2
ARITI*tTIC SHIFTING

flNLLASSIFILD M!378
N 1 5

~~~
O
~~
3

END
___________________________ DAP I7 7

I I
I

p ~~~~~~~~~Aj



1IO L” LI 
~~I _ _  

L L

~~L L

II__ _
III I IIII • 

Liii

h i  118

.10111.25 111111.4II_ i~~

MICROCOPY RESOLUTION TEST C~4ART
N*T~ONAL ~U EI.O OV ST~NO* DI — — A



i~T - - $JiitJj~~~~~~~~’

MASSACHUSETT S INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A! Memo No. 378 September 1976

—c~ 
Arithmetic Shifting Considered Harmful 0

Guy L. Steele Jr. ~

Abstract:
For more than a decade there has been great confusion over the

semant1 cs of the standard ‘arithmetic right shift’ instruction . This
confusion particularly afflicts authors of computer reference handbooks and of

Z optimizing compilers. The fact that shifting is not always equivalent to
division has been rediscovered over and over again over the years, but has
never been publicized.

This paper quotes a large number of sources to prove the widespread
extent of this confusion , and then proceeds to a short discussion of the
problem itself and what to do about it.

Keywords: arithmetic shift, twos complement , ones complement , division ,
remainder, binary arithmetic

This report describes rs~~arch done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory’s
artificial ~ntsl1igence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-75-C-0643.

* NSF Fellow
/ ~~~~~~~~ ~~~ ~~

-.

X 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,,)/4?

)

~~~~~~~~~~~~~ -- - -~~~~~ __________



—
~~~~~~~~~ ~~ -~~~~~~~~ w~ta~~W ~~~~~ —~~~~ —— f— - —.~ _~~-~~~~~ — — - -~. ~~--—~~~ -.- - ~~~~ -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~r~Rr ~1l ’~’l~T’~ ~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~

UNCLASSIFIED

~~~~

,

1~~~~~~~~~
CuRITv CLAss IFIcAT IoN OF THIS PAGE ~I~a. D~~. EnI.r.d)

READ INSTRUCTION SREPORT DOCUMENTATION PAGE -
BEFORE COMPLETING FORM

I. REPORT NUMeER - GOVT L~~ er.t1W~~~E* ~~. R*CIPIENTS CATALOG NUMBER

Memo No, 378 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

S. TYPE OF REPORT S PERIOD COVERED4p~~S~11
LE (and Subtic?.)

< Arithmetic Shifting Considered Ha rmfu~~) Memo
PERFORMING ORG. REPORT NUMBER

7 THOR(.) 0. CONTRACT OR GRANT NUMSER(.) —

~~~~~~~~~~ ~~~~~~~~~~~ J~/ 4~ __________________________

0. PCI%FOI1MINIORGANIZATION NAME AND ADDRESS - tO. PROGRAM ELEMENT. PROJECT. TASK

Artif icial Intelligence Laboratory .- ‘ AREA & WORX UNIT NUMBERS

51.5 Technology Square
Cambridge,_Massachusetts 02139 ___________________________

Advanced Research Projects Agency V Sep —176!
II. CONTROLLING OFFICE NAME AND ADDRESS (12 i2.~~~!~Q~ T DATN11.00 Wilson Blvd - 

‘
~~~ . NUMR ~ Ry. FA~ E$

Ar l ing ton , V i rg inia 22209 13
14. MONITOR ING AGENCY NAME a ADDRESS(1E dItt..wl Eta.. Cant,oSStng 0551. .) II. SECURITY CLASS. (of 155. taporf,)

Off ice of Naval Research UNCLASSIFIED
Information Systems ______________________________
An lng ton , Virg inia 222)7 1.. DECLAISIF$CAT ION/DOWNGRADINGSCH LOULE

IS. OISTNIIUTION STATEMENT ftf th6o k.p.rt) -

Distribution of this document Is unlimited .

17. DISTRIBUTION STATEMENT ~.g h. .b.l ,.ct .,,t.tad Sn bI.. k 20, U dStS.rant fran

..— . . -
IS. SUPPLEMENTARY NOTES

None

IS. KEY WORDS (Conthus. ~n ,sv~~a. .Sd. St ~~a..any and SdseHb Op Slosh ,,anb.r)

arithmetic shift remainder
twos complement binary arithmetic
ones complement
division

*0. ASITRACT (CantbiuA an ta~sP~~ aId. SE n’a.an p and Man5117 Op Slosh iianb.v)

~~For more tha n a decade there has been great confusion over the semantics of
the standard ‘arithmetic right shift’ Instruction. This confusion
particularly afflicts authors of computer reference handbooks and of
optimizing compilers. The fact that shifting is not always equivalent to
division has been rediscovered over and over again over the years, but has
never been publicized. This paper quotes a large number of sources to provi
the widespread ext.ept of this CnnfIIcinn~ and then proceeds to a short~

_—.. ~
~~~~ 

FORM
I#V I JAIl 75 1473 EDITION OF I NOV 511$ OBSOLETE UNCLASSIFIED

I/N 0102-0I4~ 6601 I _______SECUR IT Y CLASSIFICATION OF T$I$ ~ AGt (IA,.,. j ab

~

.. ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~



. 
.-

~ ~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~

- -

~~~~~~~~~~~~~~

. - - -

~

-

~~~~

‘
- - .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
~~i\

-
~~~

i’
1

* ~~

t
- 1~ -

-

1
-

-

~~~~~~~

- - . 
- - 

e ~ . 

- 
I

I
I BLOCK 20 CONTINUED”

... dlscussiofl of the problem Itself and what to do about lt.~~~ .

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~ 1


__________ - .tr!P ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

S

-

Guy I.. Steele Jr. 1 Ari~~,eti1 Shift Considered Harmful

Recently I was looking through some files concerning BLISS which Bill Wult had

given me access to and came across a letter from Bruce Leverett to him

concerning a bug:

Bill —

Scandal! Consider an expression like As-.AI2 . Th. code we put
out for this expression is exactly one instruction:

ASR A

But that ain ’t right. Suppose A is negative, for instance -1.
Dividing -1 by 2 gives a quotient of 0 and a remainder of -1 (See
the DIVNOD routine if you want to check this out). But shifting
-1 right by one bit gives -1. (13

I was amused at first, but then recalled that the MacLISP compiler had had

exactly this bug last year - it incorrectly compiled divisions by powers of

two into arithmetic right shifts. When we (Jon L. White and I) found the bug.

we were properly horrified, but then simply changed the compiler not to

perform that particular ‘optimization’ and shrugged it off.

Having now read of the similar experience of the BLISS team, I began to wonder

how many other optimizing compilers in the world contain this same error? I

was at home on a Friday night at this time, but for fun I started thumbing

through what books and old manuals I happened to have on my shelf, the

results were appalling . With only an hour’s research I found more than a

dozen cases of this same confusion! Let me give some examples here. (Unless

otherwise stated, all machines mentioned here use twos complement arithmetic ,

which is the crux of the matter, as I shall explain below.)
- I ~~~~~~

~~~~~~~~~~~~~~ ~

/ ~~~~~~~~~~~~~~~~ 

‘ ‘ L : ,~
In 1968 DEC ’s PDP-10 System Reference Manual stated : I ‘~~~~~~

.

A single shift left is equivalent to multiplying the number by ~~~~~~~~~~~~~~
(provided no bit of significance is shifted out); a shift rightJ 

~~~
.t ~ divides the number by 2... A positive E produces motion to th~

f
~ ~~~~~~~~~~~~~~~~~~~~

left, a negative £ to the right; £ is thus the power of 2 b*-~~~~~
- .,. ‘~~~~~ T

which th. number is multiplied. (2] j - - I - -~~
~~~~~~

- ~~ —-——~~~~—~~~~ ~~~~ ~~~~~~~ ~~~~~~ .~~ ~~~~~- - -~~~~~~~ - ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~— .~~-



- 
~~~~~~~~~~~~~~~ ~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
. . .  ‘~~~~~‘ ~~

- ~~~~~~ 

~~
‘

-~ —---- - -~~~~~~~ 
____a_______ __ --- --- - - ----- —S __.. - -

~~ t - . ~~~~~

Guy 1. Steele Jr. - 2 Arithmetic Shift Considered Harmful

~~~~~ ~~~~~ ( )
Also in 1968, the handbook for the DRC-44 contained this instruction

description:

Shift the 23 bit A register right N times... The result is
division by ZAN. (33

In 1969 DEC’s PDP-11 Handbook stated:

MR performs a signed division of the destination by two. [43

In 1970 the DEC Small Computer Handbook began a description of a right shift

this way:

This instruction is used for scaling... (5]

General Automation’s 1972 publication The Value of Power stated:

A right shift - is more useful , because it is equivalent to
dividing by 2, while the left shift is equivalent to multiplying
by 2 and can be reproduced by adding the contents of a register
to itself. (6] 1 ’

Not only reference handbooks are to blame. An IBM tutorial text of 1966 on

the $ystea/360 contains the following discussion:

After rounding off we are left with eleven superfluous bits at
the right end of the product. These can be shifted off the end
of the register with a suitable shift instruction. ‘Suitable in
this case means that the shift should be to the right , . . . and
it should be an algebraic shift so that if the number were
negative, proper sign bits would be shifted into the register...
The point of doing all this is that we have replaced a Divide
with a Shift , and the latter is considerably faster than the
former.

Ironically, the next page states:

We present examples like these to warn the unwary and to lay a
foundation of understanding for those with problems where the
advantages of binary arithmetic are worth the care that must be
exercised in using it. (7]

The confusion of shifti g and division is not confined to manufacturers ’ I -

publications. Gries’ 1971 book Compiler Construction for Digital Computers

a a -.
~

.
~~ ~~~~~~~~~~~~~~ -h ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~..

__ . ~~~~~~~ ~~~~~~ - ~~~~~~


~~~~~~- ~~~~~~~~~~~ ~~~~~
-
~~~~~— - --

~~~~~ ~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~ 
- - - — ~~~~~~~~

__
~~~I~-L_J ~~~~~~

I Guy 1. Steele Jr. 3 Arithmetic Shift Considered Harmful

asserts:

On binary machines, integer multiplication or division by a power
of two can be performed by a shift. (8]

The 1975 InterLISP Reference Manual provides a totally erroneous definition of

its right shift function:

(arithmetic ) right shift, value is n*2* m, i.e. n is shifted
right m places. ii can be positive or negative. (9]

To be sure, later the user is given a warning in the form of a single example:

Note that shifting (arithmetic) a negative number ‘all the way’
to the right yields -1, not 0.

— but this occurs much later in the page . Furthermore,- the on-line InterL ISP

documentation system, helpsys, prints out only the erroneous definition and

not the caveat .

Even ANSI is not clear on the shifting problem. Their 1970 definition of

• arithmetic shift -is as follows :

arithmetic shift. (1) A shift that does not affect the sign
position . (2) A shift that is equivalent to the multiplication
of a number by a positive or negative integral power of the
radix. (10]

This definition ignores all questions of overflow, and does not recognize that

the two definitions are not compatible on a machine with no minus zero if

division implies truncation towards zero.

— 

At this point let us consider the problem of shifting more clos.ly. Why is

not a shift equivalent to a division? In 1968 the IBM System/360 Principles

of OPeration manual gave the following exposition:

A right shift of one bit position is equivalent to division by 2
with rounding downward. When an even number is shifted right one

1,~ position, the value of the fieid is that obtained by dividing the
value by 2. When an odd number is shifted right on. position,

— -—-- ~~~~~~~~~~~~ ~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~ -~~~~~~~~
- , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
p

~
-- -— ~~~~~~‘-‘r- - ’~~’

- - -
~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

- .~~~~~

~ I.. Steele Jr. 4 Arithmetic Shift Considered Harmful

the value of the field is that obtained by dividing the next
lower number by 2. For example, +5 shifted right by one bit
position yieldS +2, whereas -5 yields -3. (11] (emphasis in the
text] —

This at least gives the reader some warning that shifting and division are lot

the same thing; but it is too easy to read ‘toward zero’ after the word

‘downward’, and furthermore the rule given supplies no insight as to the

action of a multiple-position shift on a negative number.

A 1972 Data General Corporation publication sheds a little more light on the

-

- 

matter:

If ones complements were used for negatives , one could read a
negative number by attaching significance to the Os instead of
the is. In twos complement notation.., one can read a negative
number by attaching significance to the rightmost 1 and attaching
significance to the Os to the left of it... In a negative -~~ -(proper) fraction, Os may be discarded at the right; as long as
only Os are discarded, the number remains in twos complement form
because it still has a I that possesses significance; but if a
portion including the rightmost 1 is discarded , the remaining
part of the fraction is now a ones complement. Truncation of a - 

-negative integer thus increases its absolute value.

Unfortunately this lucid discussion is followed on the next page by the simple

assertion: -

Shifting one place to the right divides by 2. Truncation occurs
at the right, and a bit equal to the sign must be entered at the• left . (12]

Unless the reader were exceptionally carefu l , he could easily take I -
~

‘truncation’ in the FORTRAN sense, i.e. ‘rounding toward zero’.

Knuth also provides a clear exposition of the problem, though in the context

of decimal and not binary arithmetic:

The maj or dif ference between signed magnitude and ten ’ s
complement notations in practic. is that shifting right does not
divide the magnitude by ten ; for exam ple , the number
—1 1’...99989, shifted right one, gives ...99998:-2 (assuming that

~~~- - -—.- •~~~ —. —- .- — - • ______________ .. •-~ ~~-~~~~~ •~~•-


__________ — — —-- —--~~~ -—• — — •—~~~——--———-—-- .—-.
~~~~• • —. ---- • - -—--- - --—-—-——.-—

~~~
-.-..- ---.- —.--—-

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

- - - 

— —--———-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ T

• GUY L. Steele Jr. 
- 

5 Arithmetic Shift Considered Harmful

fl’~ a shift to the right inserts ‘9’ as the leading digit when the
-& ,

~ number shifted is negative). In general, x shifted right one
digit in ten’s complement notation will give I. x/1O .1, whether x
is positive or negative. (13]

Knuth does fail to mention explicitly that shifting is equivalent to division

in nines (i.e. ones) complement notation. This fact is not difficult to see

if one considers that in ones complement notation 0 and 1 bits play roles

which are precisely dual; thus if shifting is equivalent to division (with

— rounding toward zero!) for positive numbers, a fact which is -not difficult to

prove, them by duality it is equivalent for negative numbers.

Another way of viewing the problem is to recognize that there are two

reasonable definitions of defining integer division . In any case, given a

dividend n and divisor d, we wish to compute a quotient g and remainder r such

that qd.rsn and IrI< IdI . One definition of the division operation, which I
( 4 -(;.Ill ‘FORTRAN-style’, is to require that r be zero or of the same sign as n.

This results in a symetry around zero: if FORTRANDIVIDE(n ,d) produces (q,r),

then FORTRANDIVIDE(-n,d) produces (-q,-r). Put another way, q~sign (n)1In/dlJ.

Another definition , more elegant perhaps to number theorists , I call - 
-

‘modulus-style•. In fact there are two ways to define modulus-style division :

one may either require that r be non-negative, or that r have the same sign as

d. (In these cases q’sign(d)Ln/~dIi and q.LnIdJ.) (The author is indebted to

Henry G. Baker for pointing this cases out.) In the case of a shift, the

•ffsctive divisor is always positive , and so the two definitions are

equivalent. (One can imagine yet other definitions of division subject to the

restriction that $r I<IdI; for example, ‘balanced’ division, in which r lies

between 412 (Inclusive) and -d12 (exclusive); for dm3 , this yields a

‘balanced ternary’ remainder. In general, for given d there are ZIdI-1 ways

to define division satisfying IrI (Idt.)

•~~~~
!_ ~~~~~~~~~~~~~~~~~~ - - a~ ... -___ ~

__
~ ~_~~__ 

~aa .. .~ • ~ • • ~~~



- - - • - • • -  - - - - - - - • - • 
- ~~~~~~~~~~~~~ 

- 
~~~~~~~~~-

Guy L. Steele Jr. 6 Arithmetic Shift Considered Harmful

On a ones complement machine , arithmetic right shift performs a

FORTRAN-style division; the bits shifted out, when preceded by the sign bit

of the operand, may be interpreted as the remainder . On a two s complement

machine, arithmetic right shift performs a modulus-style division; the bits

shifted out may be interpreted as the (non-negative) remainder . On either

• kind of machine, however, the division instruction usually implements the

FORTRAN-style definition, no doubt primarily due to the influence of FORTRAN —

itself. Later high-level languages have in turn tended to adopt the

FORTRAN-style definition of integer division.

Some handbooks for ones complement computers in fact correctly describe

arithmetic right shifts as being equivalent to (FORTRAN-style) division (14]

(15]; so also did handbooks for sign-magnitude machines. (16] I suspect that

this early influence is what leads many documentors and users of more modern

twos complement machines astray .

What I find distressing, however, is not so much that people keep making this

same mistake about shifting on twos complement computers, as that they do not

seem to publiciZe this mistake, even within their own group or company. There

is evidence that the IBM System/360 FORTRAN IV (H) had the same bug in 1966

that a decade later plagued the MacLISP and BLISS compilers . The program

logic manual of that time stated:

Multiplication and division by powers of two are converted ,
respectively, to left and right shift operations. (17]

Furthermore, in a 1969 CACM article (last revised in 1968) on FORTRAN IV (H),

Lowry and Medlock said:

If one operand is a power of two, a number of improvements may be vi
possible: Integer multiplication or division may become a
shift... (18]

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - -—~~-~~~—. ~~~~~~~~~~~~~~~~~~ • ~~~~~~~~ ~~~~~~~— —.— —~~~-~~~- — 
•, - —~ --



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~ .• _ - - ._

Guy L. Steele Jr. 7 Arithmetic Shift Considered Harmful

4 The bug was eventually fixed, for the 1968 edi t ion of the program logic manual
‘ft.

merely stated: - -

Multiplications by powers of two are converted to left shift
operations. (19] f

Despite this horrendous error in the compiler, however, the 1969 edition of

the IBM tutorial text cited above still contained the same error it did in

1966 ! (20 ]

A similar example occurs in DEC’ s PDP-1O Reference Handbook. The editions of

1971 and later contain the same text as the 1968 manual cited earlier, but in

addition contain a note in the margin:

An arithmetic right shift truncates a negative result differently
from IDIV if Is are shifted out. The result of the shift is more
negative by one than the quotient of IDly. To obtain the same
quotient that IDIV would give with a dividend in A divided by
N,ZAK, use

~ SKIPGE A
ADDI A,N-l
ASH A,-K

This takes 5-6 us as opposed to about 16 us for IDIVI. (21]

This idea is worth commenting on; it is the 
~~~~~~ 

suggestion I found for

‘fixing’ the problem. One can think of it as a variation on the old FORTRAN

trick for rounding numbers by adding 0.5 and then truncati ng ; adding N-i to

the negative number effectively turns the floor operation of the ASH

instruction into a ceiling operation. A more interesting way to view it is in

terms of the following code:

SKIPGE A

SUBI A,i

ASH A,-K

SKIPGE A

L--. a~~~ _ ~~~~~~~~~~~~~ •~~~~~~~~~ s
~~~~~~~~~~~~~~~~~ L ~~~~~ —~~~~‘ - - - — --~~~~~~~~~~~~~~~ -- :~~~~.. • ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



—~-- -~ •~~~-~~ -- -~~ ---..-... 
.— —--.

~ 

- -

~

-----

~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ . . .-_. •_----.—~~-w-~• — .- 

~~~~~~~

-

_ _ _ _- - • _

Guy L. Steele Jr. 8 Arithmetic Shift Considered Harmful —

ADDI A ,1 - -

Recalling that a twos complement negative is formed by taking the ones

com plement and adding I, we can see that this piece of code essentially

converts the operand to ones complement (skip if the operand is positive, else

subtract 1), performs the arithmetic shift (which performs FORTRAN-style

division on ones complement numbers of either sign), and then converts back to

twos complement. It is not difficult to prove that the shift and the addition

can be permuted if the added quantity is adjusted by the shift factor:

SKI P GE A

SUBI A,l -

SfJ PGE A - :

ADDI A N

ASH A,-K ~-
-

Combining the addition and the subtraction yields the code given in the PDP-10

• handbook. (It also removes a fencepost error which occurs when the number to

be shifted is the most negative number.)

To return , however , to my earlier complaint: besides fixing the PDP-iO —

handbook, DEC also removed the coment about scaling from the Small Computer

Handbook in 1971. (22) However, the PDP-11 handbooks ware still in error in

1973 and 1915! (23] (24]

The lesson is clear: not only is this mistake made over and over and over

again , but we have not learned from it. I think that , to those of us that

fall prey to it, when we finally discover it for ourselves it seems to be such

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ --—~~



-‘
~
-‘

~~~~
‘-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - • 

- .—•.————-—-----—— ,-—-— .—-.--..-- —,.-- 
- - 

-

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~
—
~- ,• - - — - - -~~~~~ —---- -——-- — --.----—.. - -~

- - - - - •
- - -

Guy L. Steele Jr. 9 Arithmetic Shift Considered Harmful

a trivial error that we do not mention it to others, either because it seems

not worth mentioning or because we do not wish to appear foolish for making

such a ‘simple’ mistake. I have written this paper partly to show all such

people that they are not alone. I also have three exhortations to make:

(1) To documentors: whenever documenting a standard arithmetic shift

instruction for a twos complement machine, write (in bold face!) that it is

not the same as a FORTRAN-style divide instruction . Give a complete 4.

discussion of this fact, and mention Knuth ’s floor function description and

the ‘fix’ given in the PDP-1O Reference Handbook, or other appropriate ways to

fix the problem.

(2) To computer manufacturers: arithmetic shifts actually seem to be pretty

useless. Left shifts are usually the same as logical left shifts (except for

overflow detection); right shifts don ’t do what the user wants. Why not

implement the PDP-1O’s solution in hardware as a single shift instruction ?

This can also be done by incrementing t~e result of an arithmetic right shift

iff the operand was negative and a I bit was shifted out. On the other hand ,

the FORTRAN-style division is probably never used for remainder with a

negative dividend anyway; it might be more convenient all around to implement

modulus-style division and leave shifting alone. Several number theorists

have indicated to me that FORTRAN-style division is useless for their

purposes , and furthermore it is easier to simulate FORTRAN-style given

modulus-style than vice versa.

(3) To compiler writers and maintainers: check your compiler now for this

bug! And in the future, be ~~~ careful about installing new ‘optimizations”.

(‘ If possible, try to prove that they work. After all, a bug in the compiler

- • .— --, -r - -- - - - • ~~~~~~~~~~~~~~~~ ~--4 , - - _ •______ __&_
~

__s__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •___a__ ~~~~~J-~’-- - ~~~~~~~~~~~ -

-.
~~~

.-_ - —~ ———--- ----- ~~~~~~~~~~

Guy L. Steele Jr. 10 Arithmetic Shift Considered Harmful

will produce bugs in many programs.

To anyone who by now still thinks that the problem is “obvious” and “trivial’,

I suggest that he think about arithmetic left shift on a ones complement

machine: it does not shift in zeros from the right, but copies of the sign

• bit. ‘There ’s glory for you!’ (25]

In conc lus ion , let me quote the rest of the letter from Leverett to Wulf that

started me thinking about all this. The last sentence is quite chilling.

It’s clear what the fix for this is in the compiler--just change
DIIULDIVMOD (the routine responsible for optimizing multiply,
divide , and modulus operators - GLS] so that it doesn ’t try to
change divisions into shifts. The hairy problem is
compatibility. To give you an idea of how many programs are out
there which will not work when we fix the compiler so that it’s
right , consider MULDIV .B11. Several times in the multiply and

• divide r o u t i n e s  we shift a number one bit to the right , by
telling the compiler to divide it by 2. Of course this is wrong
source code. And of course fixing it is easy--just change all
the divides into shifts (which they should have been in the first
place). But what’s the best way to tell people that they have to

- 
comb through their source f i l es  looking for this error , quick
before they get the next version of the compiler?

The first thing I’d like to do is send a note to all the Bliss-li
users in the department telling them what’s wrong. The way to
send a note to all the Bliss-li users , I would guess, is to
figure out which projects are doing coding in Bliss-li , and send
mail to project numbers (e.g. N810). Do you know offhand which
projects are making use of Bliss-il?

I ’ m not so worried abou t non-CrILJ users . When I send one of them
a new compiler , it’ s because that user specifically asked for
one , and he always has an old one to fall back on. If I make
sure to send him reams of many-times-redundant documentation
about the difference between the old and new compilers , I have
done as much as I can to help him with his compatibility
problems. It’s the local users that bother me. In particular,
there ’s this operating system kernel...

Bruce

__________________________________________________ -



~ 

~~~~~~~ ‘~~~ TW ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1
- - - • • • - -

-

-

Guy L. Steele Jr. 11 Arithmetic Shift Considered Harmfu l

References

[1] Personal commu n ication , Bruce Leverett to William A. Wull. (Spring 1976)
Quoted by permission of Mr. Leverett .

(2] Digital Equipment Corporation. PDP-lO System Reference Manual. Order No.
DEC-l0-HG AA-D (May 1968), p. 2-31.

• - (3] Dynamics Research Corporation. Instruction List for DRC Model 44 General
Purpose Processor . H-18A (September 1968), 34.

[4] Digital Equipment Corporation. PDP-11 Handbook. (1969), 35.

[5] Digital Equipment Corporation . Snail Computer Handbook . (1970), 60.

(6] General Automation . The Value of Power. Document Number 89A00064A-A
(1972), p. 5-19.

— (7] IBM Corporation . A Programmer ’s Introduction to the IBM System/36C
Architecture , Instructions, and Assembler Language . Form C2O-1646-1 (May
1966), 62-63.

(8] Gries, David. Compiler Construction for Digital Computers. John Wiley
and Sons (New York, 1911), 411.

[9] Teitelman , Warren , et al. InterLISP Reference Manual. Xerox Corporation
(Palo Alto , December 1975) , 13.4.

(10] American National Standards Institute. MS Vocabulary for Information
Processing. (1970) Reprinted by IBM Corporation in Data Processing Glossary.
Form GC2O-l699-3 (June 1912).

(11] IBM Corporation . IBM Systeta/360 Principles of Operation . Form
A22-6821-7 (September 1968), 33.

(12] Data General Corporation . How to Use the Nova Computers. (October
1972) , p. 2-10.

[13] Knuth , Donal d E. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms . Addison-Wesley (Reading, Mass., 1969), 169-170.

(14] Digital Equipment Corporation . Programmed Data Processor-i Handbook .
(1963), 18.

(15] Digital Equipment Corporation. Laboratory Computer Handbook. (1971),
154.

(16] IBM Corporation . Reference Manual 709-7090 Data Processing System. Form
A22-65O3-1 (November 1959).

(17] IBM Corporation . IBM System/360 Operating System FORTRAN IV (H) Program
Logic Manual. Form Y20-0012-O (1966), 26.

(-18] Lowry, Edward S., and Medlock , C.W. Object Code Optimization . Comm .
ACM 12, 1 (January 1969), 21.

Guy L. Stee1~ Jr. 12 Arithmetic Shift Considered Harmful

(19] IBM Corporation. IBM System/360 Operating System FORTRAN IV (H) Compiler-

- -
Program Logic Manual . Form Y28-6642-3 (November 1968), 25.

(20] IBM Corporation. A Programmer ’s Introduction to IBM System/360 Assembler
Language. Form C20-1646-5 (July 1969), 35-36.

(21] Digital Equipment Corporation . PDP-10 Reference Handbook . Order code
ATX (1911), p. 1—49 . -

(22] Digital Equipment Corporation. PDP-8/e Small Computer Handbook. (1971),
p. 7-4.

(23] Digital Equipment Corporation. PDP-ll/45 Processor Handbook. (1973),
53.

[24] Digital Equipment Corporation . UI-li PDP-11/03 Processor Handbook .
(1915), p. 4— 13.

(25] Dumpty, Humpty. Quoted in Carroll, Lewis, Through the Looking Glass,
— Chapter VI.

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~ •.  ~~~~~~~~~~~~~~~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


